Kaolin Particle Growth

In our study kaolin particle films helped manage pests, and also improved tree growth. Kaolin particle films are a type of mineral that can be sprayed on plants to create a protective layer. Asian citrus psyllids, the pest that transmits citrus greening disease (HLB), are attracted to the natural color of leaves and the particle films cover this. White and red colored particle films were used in this study. Trees with white and red dye had a greater growth rate of trunk girth than controls, regardless of infection. This study found that particle films helped reduce the number of psyllids on leaves, as well as increased tree growth under HLB pressure.

HLB is the current largest threat to the Florida citrus industry; citrus production has declined, and citrus trees are nearly all infected. HLB stunts tree growth and limits yield, especially if infection occurs when the trees are still small. We studied for three years whether kaolin particle films on newly planted trees could help manage psyllids. We also tracked tree growth response to particle films and HLB. 

HLB reduces the growth rate of trees and negatively affects fruit yield and other quality characteristics. HLB cannot be cured once trees are infected so pest control is the usual course of action when it comes to preventing infection. HLB is spread when adult psyllids carry the bacterium from infected trees to uninfected trees. Kaolin particle films are a potential alternative to insecticides as a way to manage psyllids and the reduction in tree growth caused by HLB.

Increased growth in treated trees happened in spite of HLB infection. The positive impact of particle films on growth is likely due to shading, reducing photoinhibition, and light redistribution to lower canopy layers. Kaolin treatments increased growth enough that they made up for the loss in growth from infection. This is promising because it helps relieve pest pressure, while increasing growth of HLB affected trees.

Kaolin Particle Pest Management

Huanglongbing (HLB; “citrus greening disease”) is currently the biggest threat to the Florida citrus industry. HLB has caused declines in citrus production and has infected trees at a rate of 100%. Insecticides reduce Asian citrus psyllid, the pest that transmits HLB, but they don’t prevent more psyllids from moving into the planting, and they often kill the pest after transmission. This is why growers need non-insecticidal prevention options. One of these options is to apply kaolin particle films on trees to help manage psyllids.

Kaolin particle films cover the natural color of the plants, which is what ACP are attracted to. White kaolin was already known to reduce ACP, but this study tested whether red kaolin may also help mitigate ACP. ACP are attracted to the blue and ultraviolet light in the leaves and red was thought to further reduce this. We made the kaolin red by taking naturally white kaolin and mixing in a dye and a binding agent, resulting in a pinkish color.  

This field study tested the effect red and white kaolin particles had on ACP pressure over the course of two years. The particles were added to the leaves of young non-bearing Hamlin trees. Another set of trees were treated with foliar insecticide and one control set received no treatments.

Overall, trees with red kaolin had the lowest number of ACP. Trees with white kaolin had less than the trees with foliar insecticide. The control trees had the most ACP. Important to note, none of the kaolin treatments completely prevented ACP from infecting trees but merely slowed the infection down. The onset was slower in red trees than white. These findings indicate that kaolin particle films may be an alternative pest management to foliar insecticides when it comes to reducing ACP and slowing HLB infection.

Managing Asian Citrus Psyllid and Citrus Growth Using Particle Films : Webinar Recording

Here Monique Rivera, entomologist at UC Riverside, and Christopher Vincent, physiologist at UF, discuss using particle films in citrus management. At some point I make a particularly effusive gesture, and smack my fancy microphone and lose sound for a minute. What can I say physiology is just too exciting to keep my hands down!