Fasih Khalid

Fasih Khalid came to CREC from Pakistan for a six-month program to work as a horticulturist focused on stress physiology. He also wanted to learn about physiological techniques and how to use different instruments. In Pakistan, he spent time working on abiotic stresses like water deficits and salinity. In our lab, he worked on experiments dealing with sap flow and hydraulic conductance. He said with the results the lab can determine whether “the sap flow movement is OK in relation to the regular irrigation.” Because of rising prevalence of water deficit problems in the world, it is important to see how irrigation levels in plants can be adjusted to save water and lead to more efficient water practices in the future.

IMG_4657

Fasih loves research and learning. After his Master’s he spent about a month working in a farmer’s co-op in Pakistan, which he didn’t enjoy. As soon as an opportunity presented itself, he entered his PhD. He had done research on lychee in his Master’s and had published it, so he decided to go back to school and into the research field. After a couple of months in his PhD, he decided “…there is nothing in the world for me except research. I have to be researching.” He initially was interested in horticulture after going through his required two years of studying it in Pakistan. He thought he wanted to work in floriculture and landscaping but ultimately found pomology to be the most engaging because there are many different opportunities in that field. Plus, “The good thing of fruit is you can research or if you don’t want to research you can eat.”

 

During his time at CREC, he was also able to participate in several competitions, most of which were academic, though one was a t-shirt design contest for CREC, which he won! The academic competitions allowed Fasih to share the work he did at CREC, as well as help him improve his English. He liked to share that his work is important because it helps growers understand how to adapt to a world with climate change. He believes it is important for all people, not just growers, to care about changing water conditions and how this affects plants because “…we have to save water for the world and for the plants, for the next [plants].” If growers are unable to find solutions for their plants in water scarce conditions, this will cause further problems for the world as demand for fresh water reserves increases, eventually affecting our food supply, which would affect us all. He wants to take the things he’s learned during his time here back to Pakistan. His two big takeaways were time efficiency and the benefits of using hydraulics instrumentation for research. He hopes to apply these lessons as he continues horticulture research in the future.

No. 4

Anirban Guha

Trees provide shade, but have you ever considered trees themselves needing shade? Our lab is seeking to answer this question. Anirban Guha, who is leading this effort in our lab, was able to sit down with me and answer some questions about the experiment. He joined the lab in April 2019 as a post-doctoral scholar. The experiment is attempting to determine how the trees respond to different light conditions over a period of two to three years with the use of shade nets to manipulate the environmental conditions. The lab records daily, weekly, and monthly results, and will record the yearly results when the time comes. We already know that citrus responds better in partial shade conditions, which improve yield and yield quality and photosynthesis and water status. We think that full sun has an especially bad effect on HLB trees. Anirban explained that the infected plants often cannot take in the full force of Florida sunlight; it provides them with more energy than they have the capacity to process. HLB also stunts root growth, which becomes even more of a problem when high light conditions demand more water and nitrogen than can be taken up by the roots.

The lab is testing whether shading the trees allows them to conserve more energy and require less water and nitrogen, which would help balance their functioning with the disease. Ultimately, the goal is to “[develop an] agricultural system in a way that could modify the environmental cues, and that can lead to better fitness of the plant to help sustain yield and maintain better physical performance.”

The main recipients of this experiment are scientists and citrus growers; Anirban thinks these two groups believe they have different reasons for caring about the results, but he believes their goals are actually similar and the knowledge they seek is complementary. Whether results are sought for economic reasons or a research quest, the ultimate goal is to see the trees become healthier and create more fruit yield—something both the scientific and agricultural communities can agree upon. 

Anirban takes this collaborative approach in his work life as well. The physiology lab collaborates with other CREC labs to study and test infected trees. Their results often work together to create healthier trees. For example, the entomology lab provides information on how insects spread HLB. He desires for more scientists of different disciplines to work together to achieve “functional collaborative research,” which can help the scientific community locally and worldwide. Along with scientists working together to achieve more, he also wants his research to be holistic. He wanted to study trees not just at a cellular level, but “from leaf to whole plant.” After completing his PhD in India, he found the majority of opportunities available there were for study at the cellular level. Anirban was interested in more variety and didn’t want to do what everyone else was doing. He also saw this gap in research as something he could potentially fill back home one day. He believes the study of the whole tree is important because problems tend to be linked to one another and can be better understood when a whole plant approach is taken. He enjoys his work but told me with a good-natured smile that he is not at all attached to the state of Florida and would like to return to India one day. 

Coordinating psyllid management with citrus flush

Because the Asian citrus psyllid stakes its reproduction on new citrus flush, there is a lot of interest in tailoring management to citrus phenology.  “Phenology” is an uncommon word, but it boils down to how plant development changes over time.  For instance the development of the spring flowering flush is a phenological process and names like “feather flush,” “popcorn,” and “full bloom” describe phenological stages.

Gene Albrigo has been involved in phenological modeling to predict flowering intensity and bloom time since well before the HLB era.  He has recently turned to using this model to help improve psyllid management in two ways: reducing psyllid reproduction on new flush through pre-emptive  psyllid management, and reducing negative impacts of insecticides on bee pollinations.  In other words his goal is to kill adult psyllids before they can lay eggs on tender new flush but not hurt pollinator bees with applications late in the flush, when flowers have emerged. This can be done by using the models he and collaborators developed and have maintained for more than 10 years.

Gene has worked with several regional growers, selecting some blocks to manage psyllids based on phenological predictions, leaving others as controls with calendar or sampling-based sprays.

2018-05-22 03.48.30
A May feather flush with psyllid damage.

Gene recently reported results from the first two years of developing this approach.  Results are positive, with reductions in adult psyllid numbers and egg-laying using the phenology-based approach, spraying once just prior to budbreak and again about 4 weeks later.  This also allowed a bloom period that was free of insecticide applications, leaving the pollinators to range at the appropriate time.  These results are promising for psyllid management during the floral flush, and I expect this approach to expand to become a standard practice.

Effects of kaolin on Asian citrus psyllid

Kaolin films are showing promising results in management of Asian citrus psyllid.  I recently presented preliminary results from our trial of Surround kaolin clay product and a Surround that we have modified with a red dye in presentations to the Polk County OJ Break and to the Citrus Research and Development Foundation research lunch.  To see the complete presentation click here.   

kaolin in field 6 mo
Six-month old trees with white kaolin.

The results are promising: Over the course of the first year after planting we saw an 78% reduction in mean psyllid numbers per tree in the white kaolin treatment.  Thus far, this has also translated in lower infection rates, with a mean of 10% infection in the white kaolin versus 25% in the foliar insecticide treatment.  These results are early, so we should be cautious about jumping to conclusions.  However, other studies have produced similar results, and this means that growers should consider kaolin as a viable practice to incorporate into their management programs.

psyllid plot 1 year
Mean Asian citrus psyllid counts based on weekly counts over the first year after planting on trees treated with Red-dyed or non-dyed (White) kaolin or with foliar insecticide. Click here for full presentation.